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ABSTRACT 24 

NOAA has created a global reanalysis data set, intended primarily for initialization of 25 

reforecasts for its Global Ensemble Forecast System, version 12 (GEFSv12), which 26 

provides ensemble forecasts out to +35 days lead time.   The reanalysis covers the period 27 

2000-2019.   It assimilates most of the observations that were assimilated into the 28 

operational data assimilation system used for initializing global predictions.   These include a 29 

variety of conventional data, infrared and microwave radiances, Global Positioning System 30 

radio occultations, and more.   The reanalysis quality is generally superior to that from 31 

NOAA’s previous-generation Climate Forecast System Reanalysis (CFSR), demonstrated in 32 

the fit of short-term forecasts to the observations and in the skill of 5-day deterministic 33 

forecasts initialized from CFSR vs. GEFSv12.  Skills of reforecasts initialized from the new 34 

reanalyses are similar but slightly lower than skills initialized from a pre-operational version 35 

of the real-time data assimilation system conducted at the higher, operational resolution.  36 

Basic control reanalysis data are made publicly available. 37 

 38 

  39 



3 

1. Introduction. 40 

 The Global Ensemble Forecast System (GEFS) produced by the US National Weather 41 

Service (NWS) is one of several prediction systems conducted by the NWS.  It supports 42 

medium-range weather and sub-seasonal to seasonal forecasting.   The newest version 12 43 

of the GEFS (GEFSv12 hereafter) produces 31-member ensemble forecasts each day to 44 

+35 days lead time.   The GEFSv12 system configuration and performance are documented 45 

in companion articles (Zhou et al. 2021).   Like other prediction systems in the NWS, this 46 

system is typically updated every several years.   47 

As current-generation ensemble guidance is limited by systematic errors including 48 

resolution limitations, errors in the mean state, and errors in the ensemble spread (standard 49 

deviation about the mean), products from the GEFS are commonly statistically post-50 

processed.  A time series of past ensemble forecasts and coincident observations / 51 

analyses are used to estimate the systematic errors (Vannitsem et al. 2018) and adjust the 52 

real-time forecast, improving skill and reliability.   Statistical postprocessing can also filter the 53 

predictable signal from the meteorological noise due to chaotic error growth and sampling 54 

variability due to finite ensemble size.   When used in combination with higher-resolution 55 

analyses, statistical postprocessing of ensemble forecasts can also provide a downscaling 56 

related to the modulation of weather by physiographic features (Hamill and Whitaker 2006).  57 

For infrequent events and longer-lead forecasts where skill is marginal, the statistical 58 

postprocessing is greatly aided from a long training data set of reforecasts, i.e., 59 

retrospective forecasts using the same prediction system used to generate the real-time 60 

forecasts (Hamill et al. 2004, 2006, 2008, 2013, Hamill and Whitaker 2006, Hagedorn et al. 61 

2008, Scheuerer and Hamill 2015).     Similarity of the statistical characteristics of the 62 

reforecasts and the real-time forecasts is highly desirable for statistical postprocessing; in 63 
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this way the training data resembles the real-time forecast data.  When this statistical 64 

consistency is lost, statistically post-processed product quality may suffer, especially the 65 

postprocessing of shorter-lead forecasts (Hamill 2017).    Statistical discrepancies in the 66 

short-term forecasts may occur in part because of the differing characteristics of the initial 67 

conditions in the reanalysis vs. the real-time analysis.  For this reason, initialization of 68 

reforecasts from an archive of past operational initial states from obsolete versions of 69 

modeling systems is unlikely to provide statistical consistency; the initial conditions will 70 

reflect in part the systematic errors of the outdated prediction system versions used to 71 

provide the background forecasts in the data assimilation.   Hence, if computationally 72 

feasible, production of a new set of retrospective analyses (reanalyses) consistent with the 73 

operational system is highly desirable for reforecast initialization. 74 

Many organizations across the globe have created global, multi-decadal reanalyses.   75 

These are retrospective gridded analyses of the state of the atmosphere (and sometimes 76 

other state components such as the land, ocean, and sea ice), commonly produced with a 77 

cycled data assimilation system leveraging a prior background forecast updated to the newly 78 

available observations.   Global reanalyses have been provided by the the Copernicus 79 

Climate Service/European Centre for Medium-Range Weather Forecasts (ECMWF; Uppala 80 

et al. 2005, Dee et al. 2011, Laloyaux et al. 2018, Hersbach et al. 2019), the Japan 81 

Meteorological Agency (Kobayashi et al. 2015, Harada et al. 2016), the National 82 

Aeronautics and Space Administration (NASA, Rienecker et al. 2011, Gelaro et al. 2017), 83 

the National Centers for Environmental Prediction (NCEP) and the National Centers for 84 

Atmospheric Research (NCAR; Kalnay et al. 1996), and the NCEP/Department of Energy 85 

(Kanamitsu et al. 2002).  Several have been generated by organizations within the National 86 

Oceanic and Atmospheric Administration, including the Climate Forecast System Reanalysis 87 

(CFSR; Saha et al. 2010) and several versions of the 20th Century Reanalysis (20CR; 88 



5 

Compo et al. 2011, Slivinski et al. 2019).  Most of these reanalyses, such as 89 

Copernicus/ECMWF’s “ERA5”, are intended primarily for weather and climate monitoring, 90 

and their design and choice of observations to assimilate emphasizes this.  ERA5, for 91 

example, creates a near-surface temperature analysis using 2-m temperature observations 92 

alongside the full 3-D atmospheric analysis.   This temperature analysis has many 93 

applications, but it is used only indirectly in the initialization of ECMWF’s medium-range 94 

forecasts (to affect the soil-state estimate). 95 

 The main purpose of the reanalysis discussed in this paper, the reanalysis for the 96 

GEFSv12 is reforecast initialization.  The GEFSv12 reanalysis was designed so that its 97 

initial conditions will be consistent with the operational data assimilation system used to 98 

initialize the real-time GEFSv12 ensemble predictions, to the extent practical.     If a user 99 

seeks a reanalysis for other applications such as climate monitoring or evaluation over a 100 

longer period of time than the 2000-2019 period covered by GEFSv12, they may be better 101 

served by other reanalyses such as ERA5 or 20CR or MERRA-2, depending on the 102 

application and the length of record needed.  The GEFSv12 reanalysis is an atmosphere-103 

only reanalysis, for reasons discussed later.   104 

While designed to facilitate GEFSv12 reforecast initialization for statistical 105 

postprocessing, we envision this reanalysis having several other applications.   For 106 

example, suppose in the coming years that developers will need to initialize experimental 107 

forecasts for high-impact events such as hurricane Katrina or Sandy.  The GEFSv12 108 

reanalysis will be the initialization data set of choice for the next several years of 109 

retrospective forecast experiments for the GEFS and its deterministic counterpart, the GFS 110 

(Global Forecast System).   The reanalysis will provide suitable initial conditions consistent 111 

with the underlying prediction system, and the reforecasts will provide a forecast 112 
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performance baseline.  Eventually the statistical character of the real-time initial conditions 113 

will change, be it due to prediction-system improvements which alter the background bias 114 

(Hamill 2017) or assimilation system improvements, or more observations.   At this future 115 

point, another reanalysis will be necessary; with NOAA’s migration to cloud compute and 116 

storage, perhaps this next reanalysis will be computed there. 117 

As will be discussed, ensuring statistical consistency between the real-time analyses 118 

and the reanalyses was challenging.   Generating a real-time analysis is itself 119 

computationally expensive when high analysis resolution and modern data assimilation 120 

techniques are used, techniques such as 4-dimensional variational (4D-Var; Courtier et al. 121 

1994, Rabier et al. 2000) methods or 4-dimensional ensemble-variational analysis (4D-En-122 

Var; Wang and Lei 2014, Kleist and Ide 2015).  Even with a reduced-resolution version of 123 

the operational system and with splitting the reanalysis production into streams (parallel 124 

cycles processing different segments of multi-decadal period), it took an extended period of 125 

time, O(1 year) and O(1000) cores per stream, to generate this uncoupled reanalysis.  This 126 

necessitated production of the reanalysis before the final configuration of the GEFSv12 and 127 

the operational data assimilation system were finalized, leading to some slight 128 

inconsistencies between the GEFSv12 reanalysis configuration and the real-time GEFSv12 129 

configuration.  130 

This article, then, describes the GEFSv12 reanalysis.   Diagnostics will focus on the 131 

general quality of the reanalysis compared to its NOAA predecessor, the CFSR.  It will also 132 

provide some data to compare the characteristics of the reanalysis compared to 133 

contemporaneous real-time analyses produced for the GFS and GEFS v12 forecast 134 

initialization.  The paper is organized as follows.  Section 2 will briefly describe the data that 135 

were assimilated to produce the reanalysis.   Section 3 provides a brief description of the 136 
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assimilation system, the forecast model, the ensemble system characteristics, and the land, 137 

ocean and sea-ice initialization procedures.  Section 4 describes the characteristics of the 138 

reanalysis through diagnostics such as the fit of short-term forecasts to observations and the 139 

accuracy of medium-range deterministic forecasts initialized with GEFSv12 vs the preceding 140 

CFSR.  It will also provide some diagnostics of the character of initial conditions and 141 

forecasts initialized from GEFSv12 analyses vs. the operational analyses and pre-142 

production parallel simulations of the GEFSv12, known as “retro” runs.  Section 5 reviews 143 

known issues with the reanalysis, and section 6 describes the data storage before section 7 144 

concludes. 145 

2.  Description of the data assimilated in the GEFS v12 reanalysis. 146 

 To simplify the data processing, it was decided to leverage the observational data that 147 

had already been preprocessed to generate other previous reanalyses.  Before 1 January 148 

2016, observations collected for input to the CFSR reanalysis (Saha et al. 2010) were used.   149 

After this date, observations from the operational data stream were used.   The reader is 150 

referred to this publication for a review of these data. 151 

 Satellite radiance data now provides the majority of the observations assimilated and 152 

have the greatest impact on the reanalysis quality (Gelaro et al. 2010), and the GEFSv12 153 

reanalysis used a large number of channels from a variety of satellites.   These are 154 

synthesized in Table O1 of the online appendix.   Generally, the microwave and IR 155 

radiances were assimilated from a number of geostationary and polar-orbiting satellites from 156 

the US and Europe.  For ozone observations, SBUV/2 (Solar Backscatter Ultraviolet Version 157 

2) observations from NOAA satellites were used for ozone profile and OMI (Ozone 158 

Monitoring Instrument) Aura for total ozone observations (see online appendix Table O2 for 159 

details). 160 
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 One observational data source was problematic, namely the velocity azimuth display 161 

(VAD; Browning and Wexler 1968, Lee et al. 2014) winds.   While the reanalyses were being 162 

computed, we discovered that there was insufficient quality control of these data in earlier 163 

streams, and sometimes the low-level winds were contaminated by bird migrations.    We 164 

did not have the computational capacity nor time to re-start the computations from the 165 

beginning of the cycles.  Accordingly, when discovered, assimilation of these wind 166 

observations were turned off.  For the 1999 stream, VAD data were not assimilated after 00 167 

UTC 21 February 2001.   For the 2003 stream, VAD data were not assimilated after 18 UTC 168 

6 January 2005.   For the 2007 stream, VAD data were not assimilated after 18 UTC 27 169 

November 2008.  For other streams, QC was deemed acceptable, and their assimilation 170 

was continued.  171 

3.  Data assimilation and prediction system. 172 

Table 1 summarizes the major differences between the CFSR and the GEFSv12 173 

reanalysis systems.   The most significant changes included use of a new atmospheric 174 

dynamical core to provide background forecasts, discussed in section 3.a below.  Another 175 

major difference was that the GEFSv12 reanalyses excluded the generation of 176 

accompanying 3-dimensional ocean reanalyses for weakly coupled forecast initialization.  177 

Instead, previously produced time series of optimal interpolation (OI) sea-surface 178 

temperature (SST) analyses provided the ocean boundary condition for the reanalyses. This 179 

simplification was made in part because as the GEFSv12 real-time forecasts and 180 

reforecasts extend to +35 days lead time, changes in the ocean state were smaller in 181 

magnitude during this first month than they were for the seasonal forecasts produced by the 182 

previous Climate Forecast System version 2 (CFSv2).  How SSTs evolve in the GEFSv12 183 
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reforecasts will be discussed in the accompanying article on the GEFS forecast and 184 

reforecast procedure (Zhou et al. 2021, Guan et al. 2021).   185 

The reanalyses were conducted in parallel streams of five or more years in length, 186 

starting in 1999, 2003, 2007, 2011, and 2015.  As soil moisture is quite sensitive to its 187 

initialization and takes a long period to stabilize, the first year of each stream was discarded.  188 

Hence the 1999 stream provides the reanalysis initial conditions during 2000-2003, and the 189 

2003 stream provides them during 2004-2008, and so forth (Rienecker et al. 2011).  An 190 

examination of the time-mean soil moisture for three regions with strong land-atmosphere 191 

coupling (Koster et al. 2004) are shown in Fig. 1.   These three regions are the US Southern 192 

Great Plains, northern equatorial Africa, and India.  The time- and domain mean soil 193 

moistures in these three areas do not exhibit a temporal discontinuity between stream 194 

boundaries (left column).  Similarly, scatterplots of beginning-of-stream vs. end-of-stream 195 

soil moisture at each grid point in the three domains are shown in the right-hand column, 196 

with extremely high correlation and little sign of bias.   From this we infer that the separation 197 

of the analysis procedure into streams appears to provide a legitimate way to parallelize the 198 

reanalysis productions without degrading near-surface analysis quality. 199 

a. Atmospheric dynamical core and physical parameterization suite used for background 200 

forecasts. 201 

 The FV3 dynamical core (Lin 2004, Putman and Lin 2007) is used in both the 202 

deterministic Global Forecast System (GFS) and in this version 12 of the Global Ensemble 203 

Forecast System (GEFS) that was used as the forward model in the cycled data 204 

assimilation.  Predictions using this dynamical core were much less diffusive, containing 205 

more small-scale variability relative to the previous spectral dynamical core.  The FV3 206 

dynamical core is also capable of cloud-resolving simulations when used at higher 207 
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resolutions (Putman and Lin 2007). In the FV3-based GFS and GEFS, grid spacings are 208 

denoted with a “CZZZ” notation, denoting that there are ZZZ ✕ ZZZ grid boxes across each 209 

of the six faces on the cube upon which the earth’s spheroid is projected.   For the C384 grid 210 

spacing, this would indicate that there are 384 ✕ 384 grid points around a latitude circle, or 211 

an effective grid spacing of approximately 0.23 degrees.  212 

 The parameterization suite used in the FV3 was largely the same as that used in the 213 

Global Forecast GFS version 15.   Basic details on the parameterization suite, with 214 

associated references, can be found at 215 

https://dtcenter.ucar.edu/GMTB/v3.0/sci_doc/GFS_v15_page.html and 216 

https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gefs_v12.php.  217 

b. Data assimilation procedure. 218 

We now consider the assimilation procedure (Kleist et al. 2018).   Ideally, the exact 219 

same assimilation procedure, types of observations, and prediction system would be used in 220 

the real-time and reanalysis systems.   Because of the computational expense of producing 221 

multi-decadal ensemble reanalyses, it was decided that the control reanalysis would be 222 

computed at half the resolution of the operational system, C384 vs. C768.  Similarly, the 223 

ensemble providing background-error covariances was computed at C128 in the reanalysis 224 

vs. C384 in the operational system.   The impacts will be examined in section 4, where 225 

diagnostics of the assimilation and forecast quality are examined. 226 

The data assimilation procedure used in the GEFSv12 reanalysis was a hybrid 4D-227 

ensemble-variational algorithm (4D-En-Var, Kleist and Ide 2015). This was used to update 228 

the ensemble mean, while an Local Ensemble Transform Kalman Filter (LETKF) variant of 229 

the EnKF was used to update the ensemble perturbations (Lei et al. 2018).  The GEFSv12 230 
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reanalysis system also used a 4D incremental analysis update procedure (4D-IAU, Lei and 231 

Whitaker 2016) to reduce gravity-wave noise, and it used the linearized forward operator to 232 

compute observation prior ensemble perturbations (Shlyaeva and Whitaker 2018). 233 

Analyses were produced four times daily at 00, 06, 12, at 18 UTC, though the 234 

reforecasts were initialized at the end of the incremental analysis update window 3 h after 235 

the synoptic time.  Figure 2 is a schematic illustrating the analysis workflow.  This setup 236 

differs from the NOAA operational configuration in that (1) the 80-member ensemble was 237 

C384 (~25 km) resolution in operations vs. C128 for the reanalysis, and (2) the background 238 

”control” forecast used in the operational hybrid 4D-En-Var step came from a deterministic 239 

C768 (~13 km) resolution forecast vs. C384 in the reanalysis.  After generating the 240 

reanalyses, we discovered a bug in the way snow was updated (see section 3d).  To 241 

partially correct for this, we subsequently ‘replayed’ (Orbe et al. 2017, section 2.1) the C384 242 

deterministic solution to the C128 ensemble-mean analysis (after recentering the around the 243 

hybrid 4D-En-Var analysis) to downscale the C128 analysis to C384 resolution, while 244 

updating the land surface states using the correct snow analysis at each analysis time.  The 245 

replay procedure utilized the same 4D-IAU process used in the data assimilation cycle.  The 246 

only difference is that instead of re-computing the analysis increments by re-running the 247 

hybrid 4D-En-Var data assimilation,  it used the previously generated C128 analysis to 248 

compute the increments used to constrain the higher resolution model trajectory. This C384 249 

‘replay’ analysis was used as the ensemble-mean state used to initialize the C384 250 

reforecast ensemble (after superimposing the upscaled C128 ensemble perturbations).   251 

  For the 4D-IAU procedure, analyses were produced every 3 h within the 6-h assimilation 252 

window (at the beginning, middle, and end of the window).  The model was restarted from 253 
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the beginning of the assimilation window and forced by analysis increments interpolated in 254 

time to the model time step from the 3-hourly fields.    255 

Observation quality control and bias correction was performed by the operational 256 

variational Global Statistical Interpolation (GSI) code and was configured as in NCEP 257 

operations as of 2015.  258 

c.  Stochastic physics in the cycled ensemble for data assimilation. 259 

Model uncertainty in the background ensemble and in the 4D-IAU corrector segment 260 

was parameterized by a suite of schemes that consisted of Stochastically Perturbed Physics 261 

Tendencies (SPPT, Palmer et al. 2009), Stochastic Kinetic Energy Backscatter (SKEB, 262 

Shutts 2005, Berner et al. 2008) and stochastic specific humidity perturbations in the 263 

boundary layer (SHUM).  The details of the GEFS implementation of SPPT and SKEB are 264 

outlined in Zhou et al. (2021). 265 

There were several differences in the model uncertainty parameterizations used in the 266 

cycled data assimilation compared to what were used in the GEFSv12. The first difference is 267 

that a single spatial and time scale for the random pattern was used in SPPT for the cycled 268 

ensemble data assimilation.  The background ensemble used an e-folding horizontal length 269 

scale of 500 km, an e-folding time scale of 6 h, and an amplitude of 0.8, whereas the 270 

GEFSv12 predictions used multiple length and time scales similar to the ECMWF seasonal 271 

forecast system (Molteni et al. 2011, Zhou et al. 2021).   272 

In several other respects, the application of the ECMWF SPPT methodology was 273 

changed.  In early tests to integrate the SPPT to work with the FV3-based GFS, frequent 274 

model crashes occurred.  These were traced to the interaction of the planetary boundary 275 

layer (PBL) scheme and the mountain-blocking scheme.  Both of these schemes produced 276 
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very large momentum tendencies in regions of mountain blocking.  When perturbed, they 277 

often produced unphysical oscillations that cause numerical stability issues.  The solution 278 

chosen was to apply SPPT tendencies only above a dividing streamline, which was defined 279 

as the level in the atmosphere at which the flow below was blocked due to orography; the 280 

SPPT scheme was not active in the portion of the atmosphere that was considered blocked.  281 

Another issue with the implementation of SPPT was a wet precipitation bias globally.  The 282 

perturbed moisture removed from by the microphysics was not reflected in the precipitation 283 

at the surface.  The solution was to perturb the surface precipitation with the same random 284 

number to ensure physical consistency with the perturbed tendencies in the atmosphere.  285 

The stochastic kinetic-energy backscatter scheme (SKEB) was the same as GEFSv12, 286 

but here we used a length / time scale amplitude of 500 km 6 h-1.  287 

Additionally, another stochastic scheme was active for the cycled background ensemble 288 

that was not used in GEFSv12.  Specific humidity tendency perturbations were applied to 289 

the lower layers of the model each physics time step.  The perturbations rapidly decreased 290 

in amplitude in the above the surface, with an e-folding scale of 0.2 in the vertical 291 

coordinates (sigma).  Thus if the surface pressure was 1000 hPa, the SHUM tendency 292 

perturbation at 800 hPa would be ~36.7% of the surface.  The humidity perturbations were 293 

intended to account for unrepresented variability in small-scale convective triggering 294 

features such as gust fronts, cold pools, and sub-grid humidity variability.  This stochastic 295 

scheme was inspired by Tompkins and Berner (2008), which used random samples of 296 

specific humidity distributions provided by the cloud scheme in the convection scheme.  As 297 

opposed to the Tompkins and Berner methodology which had ensembles of humidity 298 

profiles available, in the member-by-member processing of each background ensemble 299 

forecast, only the single humidity column profile was available at a given grid point with this 300 
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model’s parameterization schemes.   Hence, our approximation to their algorithm was to 301 

perturb the specific humidity with a random value, which is on the order of 0.1% per time-302 

step. Like SPPT and SKEB, the perturbations were correlated in space and time with a 303 

timescale of 6 hours and spatial scale of 500 km. 304 

d.  Land, ocean, and sea ice initialization. 305 

We produced an atmosphere-only reanalysis to reduce computational expense.  306 

Previously generated optimal interpolation (OI; Reynolds et al. 2002) version 2 SST 307 

analyses at 1/4 degree provided the ocean state.  This differs from the GEFSv12 real-time 308 

SST initialization procedure, known as “NSST” (near sea-surface temperature; Minnett et al. 309 

2019).   As there can be strong diurnal variations in the ocean skin temperature, especially 310 

under sunny conditions and weak winds, the NSST included some simplified dynamics of 311 

vertical mixing in the top ocean layers and its variation with atmospheric forcings.  The 312 

background ocean SST state predicted by NSST is updated to available in-situ and satellite 313 

observations.   Use of the NSST algorithm was not included in the GEFSv12 reanalysis 314 

because its use resulted in excessive SST bias in climatologically cloudy regions during the 315 

early years of the reanalysis (not shown), when there were fewer in-situ SST observations 316 

and infrequent IR views of the ocean.   317 

There were some systematic differences between SSTs from the OI and from NSST.  318 

Figure 4 shows the mean skin temperature at 00 UTC from the pre-production parallel SST 319 

analyses minus the skin temperature in the reanalysis during a period from late 2017 to late 320 

2019.   Over the ocean, the skin-temperature reanalysis was the OI SST analysis.   321 

Generally, mean differences were small over the oceans, though differences in excess of 1C 322 

were found in higher-latitude oceans.   The lack of major differences over the tropics 323 

suggests that surface-based convection should trigger similarly when initialized from 324 
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reanalyses as in the real-time production system.  This is probably of greater consequence 325 

to representation of the general circulation than the mid-latitude differences. 326 

Initialization of snow and ice were designed to be as described in Saha et al. (2010). 327 

One known bug in this reanalysis was that the cycled DA erroneously inserted climatological 328 

snow amounts for three of the update cycles each day (00, 06, and 12 UTC), while the 329 

actual snow analysis was inserted only at 18 UTC. The previously described replay 330 

procedure used to re-generate the control C384 analysis using the correct snow analysis at 331 

18 UTC and model-generated snow fields at 00,06 and 12 UTC. 332 

There was no direct data assimilation of top-level soil moisture observations or two-333 

meter temperature/humidity in this reanalysis as there was in other operational prediction 334 

facilities (e.g., ECMWF, 2019), though related techniques are in development within NOAA.  335 

Further, unlike the real-time GEFSv12, was there no insertion of a standalone soil-state 336 

analysis from the Global Land Data Assimilation System (GLDAS; Rodell et al. 2004, Meng 337 

et al. 2012), as multi-decadal GLDAS reanalyses were not available at the time of GEFSv12 338 

reanalysis production.    Instead, the background forecasts provided precipitation, 339 

temperature, and radiative forcings to the underlying cycled land model, but there was no 340 

explicit soil-state update based on atmospheric values as there.  Deep-soil moisture (layers 341 

2-4) were relaxed to externally specified climatology with a time scale of 60 days, with the 342 

climatology specified from an older version of the GLDAS system. 343 

There were some larger skin-temperature differences over land between the reanalysis 344 

and the pre-production parallel.   In regions with more varied terrain, some of these may 345 

represent the differences in the computational grids, which was twice as high in the pre-346 

production parallel (C768) than in the reanalysis (C384), with more terrain detail in the 347 

former.   Still, areas such as the Himalayan plateau had mean temperatures warmer by 348 
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several degrees C in the pre-production parallel analyses.   Panels (b) and (c) of Fig. 4 show 349 

that the differences around China were persistent from cool to warm season and thus were 350 

unlikely due only to the previously mentioned bug related to the snow initialization once per 351 

day.   Perhaps this region was particularly bias prone, and the insertion of GLDAS states in 352 

the pre-production parallel raised these surface temperatures relative to the reanalysis 353 

without GLDAS.  354 

4.  Statistical characteristics of the reanalysis and of forecasts from them. 355 

a. Conservation properties and the Quasi-Biennial Oscillation. 356 

 Figure 5(a) shows the time series of the analyzed global-mean dry surface pressure, 357 

which should be constant.    There is no explicit constraint during the data assimilation to 358 

enforce constancy, and hence the dry surface pressure reflects random and systematic 359 

changes to the thermodynamic structure from the assimilation of observations.   Analyzed 360 

pressure exhibits two non-meteorological jumps, the first around 13-15 July 2006 and the 361 

second 11-13 Oct 2009.   The first of the pressure jumps coincides with the advent of the 362 

assimilation of global positioning system radio occultations (GPSRO; Kursinsky et al. 1997, 363 

Anthes et al. 2008).   When these unbiased GPSRO observations began to be assimilated 364 

in large numbers, they provided an effective anchoring of the microwave radiance data 365 

(Cucurull et al. 2014), and these radiance bias corrections changed notably over a short 366 

period.   The result was that the analyzed thermodynamic structure of the atmosphere 367 

changed, and with it the integrated surface pressure.  An in-depth examination of the 368 

second pressure jump did not reveal any such conclusive cause. 369 

 The water cycle in the GEFSv12 reanalysis was not perfectly closed.  Fig. 5(b)-(c) shows 370 

time series of globally averaged precipitation and evaporation and their difference.   This 371 
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makes the water-cycle balance comparable to the MERRA reanalysis but worse than in 372 

MERRA-2.  The MERRA-2 reanalysis used extra algorithmic adjustments to ensure near 373 

closure of the water cycle (Bosilovich et al. 2017, Fig. 1). 374 

 Basic characteristics of the analysis of the quasi-biennial oscillation (QBO;  Coy et al. 375 

2016, Pascoe et al. 2005) are shown in Fig. 6.  The QBO diagnostics are based on the 376 

monthly and zonally averaged reanalysis u-wind component, -10°S to 10°N.   The annual 377 

cycle was first removed by subtraction of the 20-year average of each month.  Fig. 6(a) 378 

provides the winds as a function of pressure (ordinate) and date (abscissa).  Filtering was 379 

then performed with Fourier analysis, retaining only the first to the 19th harmonics to retain 380 

variability longer than a year (periods of 12.6 - 240 months).  The filtered data are presented 381 

in Fig. 6(b).  The time vs. pressure series closely resembles those presented from other 382 

reanalyses (e.g., Coy et al. 2016, Fig. 5).  The coarser stratospheric resolution in this 383 

reanalysis does not permit examination of characteristics above 10 hPa. 384 

b. Fit of the background forecasts to observations. 385 

 One way of monitoring the quality of the reanalysis is to display time series of the 386 

statistics of differences between the short-term background forecasts (interpolated or 387 

converted to the observation type) and the observations.   As more observations are added 388 

and as the forecast model and assimilation algorithms are improved from one reanalysis 389 

system to the next, one would expect the control background forecast to more closely fit the 390 

observations in the newer reanalysis system.   As an example, the fit of background 391 

forecasts to “conventional” observations (primarily rawinsondes, aircraft, and surface and 392 

marine in-situ observations) are shown in Fig. 7 for the 800 hPa to 900 hPa layer for both 393 

this reanalysis and the previous generation reanalysis, the CFSR.  Individual dots denote 394 

weekly averaged values, and fitted curves with annual cycles are also plotted.  Root-mean-395 
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square errors in this reanalysis were generally decreased relative to CFSR throughout the 396 

reanalysis period, while biases were somewhat larger than CFSR in the first decade and 397 

smaller in the second decade.   Similarly,  fits of the background forecasts to the NOAA-15 398 

satellite’s Advanced Microwave Sounding Unit A (AMSU-A) channel 8 are shown in Fig. 8.   399 

This channel has a peak of its weighting function around 150 hPa.   The fit to these 400 

observations was notably improved relative to CFSR.   In most cases, other levels and other 401 

microwave channels provided qualitatively similar improvement of fits.   A few satellite 402 

channels had, at first glance, had much poorer background fits to the observations in the 403 

new reanalysis (not shown).   However, these channels assimilated cloudy microwave 404 

radiances that the CFSR reanalysis did not use.  The cloudy radiances typically have much 405 

larger differences between background and observed.   In this way, the two reanalyses use 406 

different sets of observations, and direct comparisons cannot be easily performed. 407 

c. Scout-run prediction error characteristics. 408 

 Another way to evaluate the quality of the reanalysis was to conduct deterministic 409 

predictions initialized from the reanalysis and initialized from the reference standard, the 410 

previous generation CFSR.   Accordingly, for each day during the reanalysis period, five-day 411 

deterministic GFS predictions were generated from both reanalyses at C384 resolution.   412 

The two temperature predictions were then compared against an independent reference 413 

standard, in this case the ERA5 reanalysis (Hersbach et al. 2019).   Figure 9 synthesizes 414 

the results as a function of the forecast lead time (abscissa) and pressure level (ordinate).   415 

The top rows show the time-averaged root-mean-square error (RMSE) of the GEFSv12 416 

predictions minus the RMSE from the CFSR predictions; red colors indicated where the 417 

CFSR had lower error relative to the ERA5 reference standard, blue indicated where the 418 

GEFSv12 had lower errors.   GEFSv12 temperature reanalyses were generally lower in 419 
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error, with the notable exception of tropical temperatures just below the tropopause.   The 420 

GEFSv12 reanalysis used the new FV3 dynamical core as well as a new microphysics 421 

parameterization (Zhou et al. 2019).   The reanalysis also fully applied humidity observation 422 

increments in the stratosphere.  In similar testing of the pre-production cycle of GFS data 423 

assimilations and forecasts (the “retro” runs), similar humidity biases were noted, and the 424 

eventual operational GFS data assimilation configuration was changed to taper the data 425 

assimilation humidity increments in the stratosphere to zero.  We assume that the upper-426 

tropospheric and lower stratospheric temperature biases were related to this incomplete 427 

tuning of the reanalysis system prior to production. 428 

 The second row of Fig. 9 shows time-averaged prediction biases of the GEFSv12 429 

reanalysis relative to the ERA5 analyses.   The third row of Fig. 9 provides similar plots but 430 

for predictions initialized from the CFSR.   Temperature biases were more pronounced in the 431 

forecasts initialized from the GEFSv12 reanalysis.  Cold biases near 250 hPa increased with 432 

lead time and were especially prominent in the tropics.  There were also more pronounced 433 

warm stratospheric biases in predictions from the GEFSv12 reanalysis.   While lower in 434 

magnitude, the increasing biases with lead time in CFSR-initialized forecasts indicates that 435 

the bias originated in the version of the FV3-basex GFS forecast model used here, not in 436 

some aspect of the data assimilation. 437 

 Did the apparently increased upper-air temperature bias in the GEFSv12 result in 438 

forecasts with degraded accuracy?   Figure 10 shows anomaly correlation (Wilks 2011, 439 

section 8.6.4) “dieoff curves” for GFS deterministic predictions of temperature initialized from 440 

the GEFSv12 system (red) vs. from the CFSR (dashed blue).   Five lines are plotted, one 441 

each representing the average over one of the five streams.  While there was some 442 

variability in performance from one stream to the next (generally, the lower anomaly 443 
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correlations correspond to earlier streams with sparser observational data), consistently 444 

across levels and regions, the predictions initialized from the GEFSv12 system were higher 445 

in anomaly correlation, especially in the tropics despite the temperature bias. This reinforces 446 

the inferences from fits to observations (Figs. 7, 8) that the GEFSv12 reanalysis had 447 

reduced errors relative to CFSR. 448 

d. Comparisons with pre-production parallel forecasts. 449 

 In addition to the multi-decadal GEFSv12 reanalyses and the reforecasts generated from 450 

them, NOAA partners at the Environmental Modeling Center also performed approximately 451 

two years of retrospective cycled data assimilation and GEFSv12 forecasts with 452 

approximately the model and assimilation system version and that were made operational, 453 

at the target operational resolution.   These “retro” forecast data were primarily used as a 454 

comparison against the then-operational system to ensure that the new forecast system 455 

produced forecasts of equal or greater quality.   The retro forecasts form a useful baseline 456 

for comparison of the reforecasts, which, it was hoped, would be similar in error 457 

characteristics.   The cycled “retro” assimilations and forecasts did not use a strictly 458 

unchanging model and data assimilation configuration; as biases were discovered, 459 

parameter settings were changed.   In this way, it proved difficult to isolate the specific 460 

parameter settings that may have been responsible for systematic differences between retro 461 

and reforecasts beyond the obvious differences in analysis resolution.   462 

Figure 11 illustrates differences between global 5-member ensemble-mean reforecasts 463 

and the mean of five members of the retro ensemble forecasts.   The top row compares the 464 

mean prediction characteristics in the absence of any verifying reanalysis, the mean retro 465 

minus mean reforecast.   As shown in Figs. 9 (a) - (c), Fig. 11(a) indicates that the 466 

reanalysis-initialized predictions had mean temperatures that were lower than those from 467 
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the retro runs near 250 hPa, and reforecast-initialized predictions of the stratosphere were 468 

warmer. Reforecast- initialized predictions of humidity above 200 hPa were lower than retro-469 

run predictions.   Temperature biases, through geostrophic adjustment, presumably affected 470 

the wind structure above this level.   Most likely, these systematic differences were primarily 471 

attributable to differences in the cloud microphysical parameterization used in the cycled 472 

reanalysis and the application of a tapering of humidity increments in the stratosphere in the 473 

retro’s cycled data assimilation.  These tapering changes had not been made to the 474 

reanalysis system at the time of the production.  Retro-run cycled assimilations and 475 

predictions were performed later, after subsequent tuning of the microphysics reduced 476 

biases and application of tapering.     477 

 A curious feature is shown in Fig. 11(i), where u-component differences in the 200-400 478 

hPa layer grow through day +7 but then get smaller.   This can be explained by the differing 479 

lead times of forecast-error saturation.  Generally, reforecast-initialized winds at these levels 480 

had forecast errors corresponding to a 6-h loss in prediction time relative to the retro, i.e., 481 

reforecast-initialized forecasts at +7 days lead were as accurate as retro-run initialized 482 

forecasts at +7.5 days.   The global saturation time scale was largely controlled by the 483 

(shorter) value in the tropics (not shown), given the large fraction of the earth’s surface area 484 

that is between 30° S and 30° N.  Thus, global reforecast prediction errors were more 485 

quickly reaching a saturation error value than retro predictions.   But the retro predictions 486 

eventually began to saturate shortly thereafter as well.  Despite different reforecast vs. retro 487 

errors and biases in upper-air fields, the differences were smaller near the earth’s surface, 488 

which was of greater concern for most forecast applications such as postprocessing of 489 

sensible weather variables. 490 
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 Another way of evaluating the relative quality of forecasts initialized from the reanalysis 491 

and from the retro runs is with anomaly correlation dieoff curves (Fig. 12), as in Fig. 10. 492 

There were differences in the anomaly correlations of the reforecast-initialized forecasts, 493 

which were slightly lower than for the retro runs.   Consistent with Fig. 11, these were larger 494 

at higher levels and modest at lower levels. 495 

5.  Known discrepancies between the reanalysis and the real-time analysis. 496 

 Aside from the obvious resolution differences, Table 2 synthesizes what we believe to be 497 

the major discrepancies between the configuration of the reanalysis and the real-time 498 

forecast configuration.  499 

6.  Description of reanalysis data storage. 500 

Six-hourly control reanalyses for the 2000-2019 period are publicly available on the 501 

“emcrzdm” server.  590 variables at 0.25 degrees were created for the synoptic times 00, 502 

06, 12 and 18 UTC in grib2 format. Because this server also provides operational forecast 503 

data, for some times of day, download speeds may be slow.  The data can be found here: 504 

ftp://ftp.emc.ncep.noaa.gov/GEFSv12/reanalysis/FV3_reanalysis/ 505 

7. Conclusions. 506 

  This article has described the algorithms behind and the characteristics of a multi-507 

decadal global ensemble atmosphere-only reanalysis covering 2000-2019.     It was 508 

designed for initializing the atmospheric component of reforecasts for the new US National 509 

Weather Service Global Ensemble Forecast System, version 12 (GEFSv12), described in a 510 

companion article (Guan et al. 2021).   It has approximate consistency with the operational 511 

data assimilation procedure used to initialize the real-time GEFSv12 forecasts.   Partly 512 
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because of computational expense that necessitated lower reanalysis resolution and partly 513 

because the reanalysis had to be created before the operational configuration was settled, 514 

there were inconsistencies.  For one, reanalysis resolution was lower.  Also, upper-air 515 

thermodynamic variables were different between reanalyses and real-time analyses due to 516 

different parameterization configurations, and that affected the upper-air wind analyses as 517 

well.   There were some near-surface differences, in one case due to a bug in the updating 518 

to snow analyses, as well as to different real-time vs. reanalysis procedures for land and 519 

SST initialization. 520 

We encountered significant challenges in the production of this reanalysis that are 521 

motivating some potential changes the next time a NOAA modern-era reanalysis is created.   522 

The most significant problem was that reanalysis computations had to be spread over a long 523 

period of time due to NOAA’s supercomputers being saturated.   Consequently, the 524 

reanalysis configuration was decided roughly one year before final decisions were made on 525 

the real-time analysis configuration used for GEFSv12 initialization, and computations were 526 

spread over a long period.   Perhaps projects like reanalyses and the accompanying 527 

reforecasts are more appropriate for cloud computing, where their computations can be 528 

delayed until just before a model implementation and then performed over a short period of 529 

time.   With the short production period, a consistent system configuration can be used for 530 

both reanalysis and the real-time system.   The potential downside of this approach is the 531 

expense of cloud computing.   However, when factoring in all the comparative costs of 532 

NOAA-owned vs. cloud high-performance computing, the costs may be more comparable, 533 

especially if cloud computations are performed with less expensive “spot” instances. 534 

Data preparation and quality control is always a challenge with reanalyses.   While we 535 

leveraged archived NOAA observational data used in a previous reanalysis, the international 536 
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sharing of reanalysis observational data sets would have many desirable consequences.   537 

With more people involved in data preparation and quality control, each organization would 538 

have greater confidence in the fidelity of these data.   Also, were standardized observation 539 

data sets used by multiple organizations, then reanalysis comparisons will become more 540 

straightforward, and differences in quality can be attributed to model and assimilation 541 

system design rather than to observation data-set differences. 542 

Particular challenges in consistency of reanalysis vs. real-time analysis also occurred 543 

near the earth’s surface.   Consistent global land-data assimilation system (GLDAS) 544 

reanalysis states were not available at the time of reanalysis production, and the real-time 545 

sea-surface temperature initialization procedure did not perform acceptably in the more 546 

data-sparse environment early in the reanalysis period.   Hence, the development of 547 

consistent, coupled ocean-atmosphere data assimilation procedures shared between the 548 

reanalysis and the real-time system are a priority.   Similarly, improvement of land-data 549 

assimilation procedures so that they can be implemented consistently between reanalysis 550 

and real-time operations are also desirable.   NOAA is currently working on procedures that 551 

improve on GLDAS procedures by using 2-m temperature and humidity observations and 552 

other data to make increments to the soil state (Draper 2021).   When implemented across 553 

applications, this should both improve the consistency and make future reanalyses more 554 

widely useful, such as for climate monitoring applications in addition to reforecast 555 

initialization. 556 
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Table 1: A synthesis of the major differences between the CFSR and GEFSv12 reanalyses. 781 

Aspect changed  CFSR configuration GEFS v12 configuration 

Period of record 1978-current 2000 - 2020 

Atmospheric dynamical core and 
control forecast grid spacing 

Spectral, T382L64 (~ 38 km 
grid) 

FV3 (Lin 2004, Putman and Lin 
2007), C384L64 (~ 25 km 
grid) 

Microphysical parameterization  Zhao-Carr (Zhao and Carr 1997) GFDL (Phillips and Donner 
2006, Zhou et al. 2019) 

Other parameterizations Saha et al. (2010)  GFSv15 (2020) 

Atmospheric data assimilation 
methodology 

3D-Var (Parrish and Derber 
1992, Kleist et al. 2009) 

Hybrid En-Var with replay 

Ensemble usage in data 
assimilation 

None 80-member EnKF at C128L64 (~ 
75 km)  to provide 
background- error 
covariances. 

Ensemble stochastic physics None (single control member for 
data assimilation) 

Stochastically perturbed physical 
tendencies (SPPT), 
stochastic boundary-layer 
relative humidity (SHUM), 
and stochastic kinetic-
energy backscatter (SKEB) 
[this paper] 

Snow updates SNODEP (Kiess and Kopp, 
1997) before 1997, NESDIS 
IMS (Helfrich et al. 2007) 
thereafter.  Updated 4x 
daily. 

NESDIS IMS (Helfrich et al. 
2007).  Updated only at 00 
UTC, otherwise climatology 
for other 3 cycles (a bug). 

Land-surface analysis Separate land-surface analysis 
with analyzed forcings (Saha 
et al. 2010) 

Land-surface forcings directly 
from short-term forecasts. 
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Ocean analysis  SST via OI (Reynolds et al. 
2007); rest of ocean state 
with 3D-Var using MOM4 
ocean and weak coupling 

SST via OI (Reynolds et al. 
2007).  No weak coupling in 
cycled DA, no full ocean 
analysis. 

Tropical cyclone processing  Vortex relocation to observed 
position (Liu et al. 1999)  

Direct assimilation of central 
pressure, no relocation 

 782 

  783 
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Table 2:   Consistency issues in the GEFSv12 reanalysis relative to the operational data 784 

assimilation scheme, and their consequences. 785 

Issue Consequence 

OI SST in reanalysis vs. 
NSST in operations 

Reanalysis ocean initial SSTs are systematically warmer in 
some extratropical areas, with SST reforecasts inheriting this 
bias. See Fig. 4(a). 

Snow analyses only 
inserted one cycle of 
four. 

Despite replay procedure to ameliorate differences, some land-
surface skin temperature bias. See Figs. 4(b) - (c) 

Soil temperature and 
moisture initialization 
not via GLDAS in 
reanalysis 

Freely cycling land-surface state in reanalysis procedure can 
result in initial systematic differences of soil moisture and 
temperature. 

Microphysics and 
parameterization tuning 

Biases in upper tropospheric and stratospheric variables in the 
reanalysis relative to real-time system.  See Figs. 9, 11. 

US Doppler radar velocity-
azimuth display winds 
turned off 

Degraded lower-tropospheric wind analyses prior to their 
discovery (section 2 of this manuscript) 

Velocity azimuth display 
winds not assimilated 
in much of reanalysis 
because of insufficient 
quality control 

Lower-tropospheric wind observations in reanalysis over US 
somewhat sparser than in real-time analysis. 

 786 

 787 
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 788 

Figure 1: Time series of mean volumetric soil moisture in overlapping streams for three areas 789 

with strong land-atmosphere coupling. (a) US Great Plains, (c) Northern equatorial Africa, 790 

and (e) India.  Also plotted are scatterplots of the soil moistures in each region between the 791 

last day of one stream and the first day of the next stream; each dot represents a separate 792 

grid point at one of the four stream boundaries. 793 

  794 
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 795 

Figure 2:  Cycled data assimilation data and process flow used in the GEFSv12 reanalysis. 796 

Cycled lower-resolution LETKF analyses were maintained alongside the higher-resolution 797 

control En-Var analysis.   Background cycled LETKF forecasts informed the background-798 

error covariance model in the hybrid En-Var.   LETKF analyses were re-centered around the 799 

En-Var control.  The LETKF analyses were computed at ensemble resolution C128, three 800 

times lower than operations.  The control analysis was computed at C384, two times lower 801 

resolution than operations. 802 
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 803 

Figure 3: Vertical levels for the cycled data assimilation and forecast model used in this 804 

reanalysis for a surface pressure of 1000 hPa, plotted on (a) logarithmic in pressure, and (b) 805 

linear in pressure. 806 



41 

 807 

Figure 4:  Differences between 00 UTC analyzed skin temperatures, pre-production parallel 808 

analysis minus reanalysis, (a) for the period 1 Dec 2017 to 30 November 2019, (b) a subset 809 

of the domain for dates within this period and for the months November to April, and (c) for 810 

dates within this period from May to October.   811 
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 812 

Figure 5:  Time series of (a) dry surface pressure, (b) precipitation and evaporation rate, and (c) 813 

precipitation minus evaporation rate.  814 
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 815 

Figure 6.   Illustration of the monthly zonal-mean wind in the 10° S to 10° N latitude band, 816 

illustrating the QBO in this reanalysis. (a) before filtering, and (b) after.  817 



44 

818 

Figure 7:  (a) 12.5-day average RMSE fit (dots) of control background forecast to 819 

conventional data, red for GEFSv12 analysis and blue for CFSR. (b) averages of control 820 

background forecast bias.   Colored lines in top panel are estimated with linear regression 821 

including an annual cycle, and the lines in the bottom panel are estimated with a Gaussian 822 

kernel smoother with a 125-day e-folding time scale. 823 
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 824 

Figure 8: Two-week average RMSE fit (dots) of control background forecast to the NOAA-15 825 

polar-orbiting satellite’s AMSU-A channel 8 (peak weighting at ~ 150 hPa), red for GEFSv12 826 

analysis and blue for CFSR.   Overplotted are Gaussian kernel smoother RMSEs with an e-827 

folding correlation time scale of 125 days. 828 
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 829 

Figure 9.   Root-mean-square error (RMSE) and bias characteristics of deterministic FV3-based 830 
GFS temperature forecasts initialized from GEFSv12 reanalysis and CFSR initial conditions 831 
relative to ERA-Interim reanalyses.  Average differences are shown as a function of forecast 832 
lead time (x axis) and pressure level (y axis).  RMSE differences (GEFSv12 initialized minus 833 
CFSR initialized) for the (a) Northern hemisphere (20°- 90°N, (b) tropics (20°S - 20°N), and 834 
(c) Southern hemisphere (90°S - 20°S).  Bias of GEFSv12 initialized forecasts for the (d) 835 
Northern hemisphere, (b) tropics, and (c) Southern hemisphere. Bias of CFSR initialized 836 
forecasts for the (g) Northern hemisphere, (h) tropics, and (i) Southern hemisphere.  837 
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 838 

Figure 10: Anomaly correlation (AC) “dieoff” curves of temperature. Different rows represent 839 

different vertical levels, 250 hPa, 500 hPa, and 850 hPa, respectively.  Different columns 840 

represent the northern hemisphere (20°- 90°N), tropics (20°S - 20°N), and southern 841 

hemisphere (90°S - 20°S), respectively.   Red lines provide AC averages over each stream 842 

with GEFSv12 initialization of the FV3 GFS deterministic forecast, neglecting the first (spin-843 

up) year.  Blue dashed lines provide averages over each stream with CFSR initialized FV3 844 

GFS deterministic forecast.845 
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(caption next page) 847 



49 

Figure 11: Comparisons between mean of 5-member C384 ensemble predictions initialized 848 

from the GEFSv12 reanalysis and the “retro” analysis for the period (Dec 2017 to Nov 2019).  849 

Data are plotted as a function of forecast lead time (abscissa) and vertical pressure level 850 

(ordinate); RH data were not available above 100 hPa.  The top row shows the global-mean 851 

difference in reanalysis-initialized forecasts minus retro-initialized forecasts for (a) 852 

temperature, (b) relative humidity, and (c) u-wind component.  The second row shows the 853 

retro-run prediction global and ensemble-mean RMSE for (d) temperature, (e), relative 854 

humidity, and (f) u-wind component.   The bottom row shows difference in ensemble-mean 855 

RMSE of predictions from the reforecast minus those from the retro.  856 
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 857 

Figure 12: Anomaly correlation dieoff curves for forecast temperature in the Northern 858 

Hemisphere (top row), Tropics (middle row), and Southern Hemisphere (bottom row), for 859 

250 hPa (left column), 500 hPa (center column), and 850 hPa (right column).  Reforecasts 860 

are presented in red and retro simulations in cyan.    861 
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